你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解:
此题采用动态规划的思想,与198打家劫舍dp类似,不同之处在于本题房屋是围成一个圈,198是一条直线。 所以这道题需要考虑第一个房屋和最后一个房屋不能同时抢劫。
故用这种思路解题,或者抢劫 0-nums.length-1范围的房屋,或者抢劫 1-nums.length范围的房屋。 两者之间的最大者,就是题目的解。
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
public static int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
if (nums.length == 2) return Math.max(nums[0],nums[1]);
return Math.max(robRange(Arrays.copyOfRange(nums,0,nums.length - 1)),
robRange(Arrays.copyOfRange(nums,1,nums.length)));
}
public static int robRange(int[] nums){
// 定义状态,dp[i] 代表抢i家 所得的最多总金额
int[] dp = new int[nums.length];
// 设置初始状态
dp[0] = nums[0];
dp[1] = Math.max(nums[0],nums[1]);
// 确定状态转移方程
for (int i = 2; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.length - 1];
}
|
时间复杂度 :O(N)
空间复杂度 : O(N)
优化:
同样此题可以做相应优化,再动态规划的步骤中,不使用dp数组存储, 而采用同198相同的两个变量记录的方法,优化空间复杂度。
优化代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
public static int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
if (nums.length == 2) return Math.max(nums[0],nums[1]);
return Math.max(robRange(Arrays.copyOfRange(nums,0,nums.length - 1)),
robRange(Arrays.copyOfRange(nums,1,nums.length)));
}
public static int robRange(int[] nums){
// 定义状态 dp数组第i位代表房屋数量i时,可打劫的最高金额
// 初始状态
int first = nums[0];
int second = Math.max(nums[0],nums[1]);
int result = second;
// 动态转移方程,即确定dp[i] 与 dp[i - 1]的关系
for (int i = 2; i < nums.length; i++) {
result = Math.max(first + nums[i], second);
first = second;
second = result;
}
return result;
}
|
以上代码在空间复杂度上做了优化, 空间复杂度由之前O(N)降低至O(1).
时间复杂度 :O(N)
空间复杂度 : O(1)